Flexible Network Binarization with Layer-wise Priority
نویسندگان
چکیده
How to effectively approximate real-valued parameters with binary codes plays a central role in neural network binarization. In this work, we reveal an important fact that binarizing different layers has a widely-varied effect on the compression ratio of network and the loss of performance. Based on this fact, we propose a novel and flexible neural network binarization method by introducing the concept of layer-wise priority which binarizes parameters in inverse order of their layer depth. In each training step, our method selects a specific network layer, minimizes the discrepancy between the original real-valued weights and its binary approximations, and fine-tunes the whole network accordingly. During the iteration of the above process, it is significant that we can flexibly decide whether to binarize the remaining floating layers or not and explore a trade-off between the loss of performance and the compression ratio of model. The resulting binary network is applied for efficient pedestrian detection. Extensive experimental results on several benchmarks show that under the same compression ratio, our method achieves much lower miss rate and faster detection speed than the state-of-the-art neural network binarization method.
منابع مشابه
Application of Artificial Neural Networks for Analysis of Flexible Pavements under Static Loading of Standard Axle
In this study, an artificial neural network was developed in order to analyze flexible pavement structure and determine its critical responses under the influence of standard axle loading. In doing so, more than 10000 four-layered flexible pavement sections composed of asphalt concrete layer, base layer, subbase layer, and subgrade soil were analyzed under the impact of standard axle loading. P...
متن کاملPriority Ordering and Packetization for Scalable Video Multicast with Network Coding
The integration of scalable video representation and network coding (NC) offers an excellent solution to robust and flexible video multicast over IP networks. In this work, we examine one critical component in this system, i.e. video priority ordering and packetization at the source of the multicast tree. First, a GOP-adaptive layer-based packet priority ordering algorithm is proposed to allow ...
متن کاملAdaptive Spectral Separation Two Layer Coding with Error Concealment for Cell Loss Resilience
This paper addresses the issue of cell loss and its consequent effect on video quality in a packet video system, and examines possible compensative measures. In the system's enconder, adaptive spectral separation is used to develop a two-layer coding scheme comprising a high priority layer to carry essential video data and a low priority layer with data to enhance the video image. A two-step er...
متن کاملA cosine maximization method for the priority vector derivation in AHP
The derivation of a priority vector from a pair-wise comparison matrix (PCM) is an important issue in the Analytic Hierarchy Process (AHP). The existing methods for the priority vector derivation from PCM include eigenvector method (EV), weighted least squares method (WLS), additive normalization method (AN), logarithmic least squares method (LLS), etc. The derived priority vector should be as ...
متن کاملForeground-Background Regions Guided Binarization of Camera-Captured Document Images
Binarization is an important preprocessing step in several document image processing tasks. Nowadays handheld camera devices are in widespread use, that allow fast and flexible document image capturing. But, they may produce degraded grayscale image, especially due to bad shading or non-uniform illumination. State-of-the-art binarization techniques, which are designed for scanned images, do not...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1709.04344 شماره
صفحات -
تاریخ انتشار 2017